
J .  Fluid Mech. (1980), vol. 97, part 1, pp .  205-213 

Printed in Oreat BPitain 
206 

Bispectra of internal waves 

By C. H. McCOMAS AND M. G. BRISCOE 
Wood8 Hole Oceanographic Institution, Woods Hole, MA 02543 

(Received 22 March 1979 and in revised form 9 July lD79) 

This note summarizes a detailed numerical computation of bispectra arising from weak 
nonlinear resonant interactions of internal waves whose energies are represented by 
the Garrett & Munk (1975) model spectrum. Two spectra are computed - the bispec- 
trum of power and the auto-bispectrum of vertical displacement. These are chosen 
because the first is the most informative and the second is easy to observe. The nu- 
merical computations indicate that the level of the bispectral signal is much too low 
to be detected by any reasonable observational programme. Even more disturbing, 
bispectra of Eulerian variables are subject to a kinema.tic contamination causing a sig- 
nificant bispectral level which can easily be misinterpreted as a nonlinear interaction. 

1. Introduction 
Bispectra, the double Fourier decomposition of third-order moments, have been 

used in turbulence (Lii, Rosenblatt & Van Atta, 1976; Helland, Van Atta & Steger, 
1977) and in ocean surface waves (Hasselmann, Munk & MacDonald 1963) to observe 
nonlinear coupling among wave components. The former computed the ‘ bispectrum 
of power ’ which indicates the rate of energy transfer into one component from inter- 
action of two others; the latter successfully compared theoretical and observational 
bispectra. 

McComas & Bretherton (1977) and McComas (1977) have shown that there are 
strong, scale-separated, resonant interactions occurring in the internal wave field. It 
was hoped that these interactions would produce a characteristic bispectral signal of 
sufficient strength to be verified by observation. 

Section 2 presents a very brief description of the theoretical development for the 
numerical computation of Lagrangian bispectra. Computations using the Garrett & 
Munk spectral model demonstrate the futility of bispectral analysis for indicating 
ocean internal wave interactions. Much greater detail is available in McComas (1978). 

Section 3 shows that Lagrangian and Eulerian bispectra can be different if the field is 
Gaussian to first order. The Eulerian bispectra are subject to a kinematic contami- 
nation similar to the familiar fine-structure contamination of variance spectra. We 
develop here a model for self-conta,mination for the quasi-Eulerian variables used by 
Neshyba & Sobey (1975; hereinafter referred to as NS) and reproduce the major 
features of their result. Combined with the computations of $2  and further obser- 
vational results (Briscoe & McComas 1979), we feel that NS’s result cannot be 
interpreted as evidence of nonlinear interaction. 
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2. Numerical computations 

v(x, t )  and w(x, t )  may be defined as 
The cross-bispectrum of any stationary homogeneous random variables u(x, t ) ,  

BtJvW(~’, w’ ,  k”, w ” )  = - 
x Tuvw(r’, 7’, r”, 7”) exp [ - i d .  r - i0’7’ - id’. r” - ~ w ” T ” ]  dr’dr”d7‘d~” 

where Tuvw(r’, 7’, r”, 7”) = (u(x, t) v(x + r‘, t + 7’) w(x + r”, t + 7”)). 
The bispectrum is then the double Fourier transform of a third-order correlation. If 
u, v and w are independent Gaussian processes then this correlation is zero at  all 
separations, and the bispectrum is zero at all K, w .  Any process which is not strictly 
stationary, homogeneous, or Gaussian will have a non-zero bispectrum. It is the 
departure from Gaussianity due to dynamic nonlinear coupling that is of interest here. 

McComas (1978) has shown that for a weakly nonlinear field, whose amplitude can 
be expanded in powers of a small parameter and whose first order field is linear and 
Gaussian (the usual assumptions leading to weak resonant interaction), that any 
bispectrum of Lagrangian variables is given by the general form 

(1)  

Buvw(K‘, W ’ ,  K”, W ” )  = H ~ ~ : I $ E ~  b ( K  + K’ + K”) b(SQ(K)  + S‘Q(K‘) + S”Q(K”)) 

X [SA(K’) A ( K ” )  + S ’ A ( K )  A ( K ” )  + S ” A ( K ) A ( K ’ ) ] ,  (2) 

where H is a complicated complex interaction coefficient depending only on K, K‘, K” 

and on the choice of variables u, v, w; s = & 1, Q(K) is the dispersion relation, and A(K) 
is the wave action density. The form of (2) is that of the integrand in Hasselmann’s 
(1966) formulation for the rate of change of the action density. In fact, the bispectrum 
of power, defined as that combination of variables which indicates the time rate of 
change of energy, i.e. the nonlinear terms in the energy equation, is precisely that 
integrand times the frequency 

a A ( K )  m ( K )  
Bpower(K‘, W ’ ,  K”, W ” )  = W - = - 

at at 

A more complete derivation of (2) and (3) is contained in McComas (1978). 
Given some model for the action density spectrum, any bispectrum can be predicted 

by a numerical evaluation of these formulas and then compared to bispectra obtained 
from data. 

The theoretical bispectrum (3) is easy to evaluate as only one triad contributes to 
each point in the eight,-dimensional bispectrum. However, besides being awkward to 
display, such a bispectrum would require observations in all space dimensions, or two 
space dimensions and time, either of which is a considerable task. In order to compare 
the numerical results with observations, the number of arguments can be reduced by 
integrating the bispectrum over the other arguments. Because time series records are 
most readily available, the frequency bispectrum was chosen. Thus 

B ( w ’ ,  w ” )  = . . . / B ( K ’ ,  W ’ ,  K”, 0”) b(W’ - Q(K’)) Q(w” - n(d) d d d d ,  (4) 
-a 
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FIGURE 1 .  The --3quency bispectrum of power contoured in powers of ten in n J- Dashed 
contours indicate negative values. Thin solid lines represent boundaries outside of which the 
bispectral level is zero because one of the frequencies is smaller thanf = 7 x 8-l or larger 
than N = 5 x 10-8 8-1. 

where B(K', w' ,  K", w " )  is given by (2) or (3).  Equation (4) is what has been numerically 
evaluated based on the Garrett & Munk (1975) spectrum. McComas (1978) discusses 
other projections. 

The results are displayed in figure 1 for the bispectrum of power and in figure 3 for the 
auto-bispectrum of vertical displacements. It is not the purpose of this note to detail 
the features of these numerical results. We simply indicate that there is a ridge in both 
bispectra where one frequency is small. These can be identified with the dominant 
interaction mechanisms noted by McComas & Bretherton (1977). 



208 C. H .  McComas and M .  G .  Briscoe 

I / 

40 I 
/ 

/ ' \\ 

20 40 60 80 

w 'If 
FIGURE 2. Contour plot of the squared bicoheronco for the froquency bispectrum of power. Only 

the upper octant is shown. 

As we hope to make comparisons of these theoretical bispectra to observed bispec- 
tra, we should inquire as to whether the bispectral levels are sufficiently high to be 
detected with statistical confidence in any reasonable experiment. Haubrich (1  965) 
has shown that the required number of estimated degrees of freedom (e.d.0.f.) for the 
95 yo confidence level for the squared bicoherence is 

( 5 )  

where Cis the bicoherence a t  w' ,  W" for a band-width A d ,  A d .  The bicoherence may be 
defined as 

v = 4/C2(w', w";  Awl, Aw"), 

where P,(w) is the variance spectrum of u. Thus, C is zero if u, v, w are independent 
Gaussian processes. However, in any finite sample size, C will be non-zero even for a 
Gaussian process. For any given bispectral level, the e.d.0.f. must exceed v if the process 
is to be distinguished from a Gaussian process with 95 % confidence. 

Figures 2 and 4 show plots of C2 for a band-width equal to the inertial frequency f 
for the two computed bispectra. The smallest v is of the order of 1000; since it involves 
waves with a period of approximately one day it indicates a 3 year experiment is 
required ! Clearly, the detection of such a low bispectral level is not feasible. 

Why should these interactions be so difficult to detect? There are several reasons. 
First, the interactions are not very strong. Consider an order-of-magnitude estimate 
for the squared bicoherence of power 
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FIGURE 4. Contour plot of the squared bicoherence of the frequency auto-bispectrum of 
Lagrangian vertical displacements. 
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where E is the energy spectrum and S is the shear spectrum. If S is the total shear, 
TN the buoyancy time scale, and Tint is the interaction time scale, then 

Taking the strong ridge in figure 2 with w' = 40 f, W" = 1.5 f, Aw = A d  = A d '  = 1 f 
and evaluating (8) using the Garrett & Munk spectrum gives 

such that for a several day experiment, the interaction time must be of the order of the 
bupyancy time, or equivalently, the period. This is a rapid, strong interaction ! 

Perhaps even more restrictive, the interaction must be due only to interactions with 
a particular o' and w". However, there are many combinations of frequencies that sum 
to w and all contribute to E ( w ) .  Although a single wave component may be interacting 
with two other waves in a nonlinear and bispectrally-detectable way, that wave com- 
ponent is also simultaneously interacting with many other wave pairs. The low utility 
of bicoherence is a statistical dilemma arising from trying to use a three-wave idea in a 
many-wave random field. A t  second order, the concept of partial coherence (Bendat & 
Piersol 1971) is used to treat a similar difficulty; we have no similar theory of partial 
bicoherence. 

Finally, for the particular case of internal waves, we note that large scale waves are 
energetic, but not very nonlinear, while the fairly nonlinear waves are not very ener- 
getic. Thus the bicoherence normalizes the nonlinearity of the small scales with the 
energy of the large scales, which results in a low bicoherence. (Internal wave frequency 
is independent of spatial scale.) 

To summarize, numerical computations of bispectra of resonantly interacting 
oceanic internal waves indicate that bispectra from observed records should not be 
significantly different from zero. 

3. Bispectral contamination 
The previous section appears to contradict the statistically significant bispectrum 

of vertical displacements reported by NS. This section will demonstrate that Eulerian 
bispectra are subject to a kinematic contamination, such that even a linear, uncoupled 
field gives a non-zero bispectrum reproducing the characteristic features of the NS 
result. Together with the preceding section, we therefore suggest their result cannot 
be ascribed to nonlinear coupling. 

Any Eulerian variable QE(x,  t )  can be related to the Lagrangian variable QL(x,  t )  
through the Lagrangian displacement gL(x,  t )  by 

Q L ( x ,  t )  = Q E ( x ,  t )  - ~ L ( x ,  t ) .  V Q L ( x ,  t )  + . -. (10) 

correct to second order (Phillips 1966). Third-order time correlations and frequency 
bispectra are then related by 

( Q E  QE Q.y) = (QL QL &I;> - (EL.VQL QL Q L )  - (QL ~ L - V Q L  Q L )  

- ( Q r , Q r . T I ; , ~ Q d +  (11)  
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FIGURE 5 .  Sketch of constant temperature surface at t = to (solid) and t = to+At (dashed). A 
particle (0)  at the Eulerian line sensor (vertical bar) at time to will be displaced away from the 
line sensor at  to + At. The line sensor will be measuring the depth position of the constant tem- 
perature surface for a different particle (0). Hence this measurement is not purely Lagrangian. 

If the wave motion is of small amplitude, the third-order products are nearly equal - 
unless the Lagrangian statistics are Gaussian. Then the Lagrangian triple correlation 
is zero but the fourth-order terms are not and, hence, the Eulerian triple correlation is 
non-zero. These fourth-order terms can be thought of as a third-order correlation 
between QL, QL,  and sL. VQL, a ‘false ’ signal which arises because gradients of QL are 
swept past the fixed sensor. This is analogous to the more familiar ‘finestructure 
contamination ’ found in second-order spectra, Here it is more serious, as the real 
signal is zero and only the kinematic contamination gives any result. 

This contamination is a possible explanation for the significant bispectrum of NS. 
Their vertical displacement time series were taken from encounters of undulating step- 
like layers on a vertical array of temperature sensors deployed from an ice island. Thus 
the measurement is approximately Eulerian in the horizontal, but neither Lagrangian 
nor Eulerian in the vertical figure ( 5 ) .  Using (1) and (1 1)) and assuming the Lagrangian 
field is Gaussian so that fourth-order moments can be expressed as products of 
second moments, and additionally horizontal isotropy, then the NS bispectrum is 
given by 

and similarly if w‘ = 0 or W“ = 0. The first term in the brackets is the power of the 
‘false ’ vertical displacement due to the sweeping of horizontal gradients in vertical 
displacements past the fixed Eulerian sensor. Remember that this non-zero bispectral 
value arises even when the Lagrangian field is non-interacting (Gaussian). Further- 
more (12) is non-zero precisely where NS found their strongest results, i.e. wherever 
one of the frequencies is in the lowest frequency bin. Neshyba has found (personal 
communication 1978) that these bispectral values are not significant if the trend is 
removed from the data. An evaluation of (12) using the Garrett & Munk (1975) model 
with a 10% vertical asymmetry yields a bicoherence of about 0.5, several orders of 
magnitude higher than that indicated by the theory. 
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We are not suggesting that (12) precisely explains NS’s result, for many assumptions 
have been made. However, in view of the large bicoherences possible from the kine- 
matic contamination of  Eulerian variables, the stark disagreement with theoretical 
prediction, and the lack of confirmation from further observations (Briscoe & McComas 
1979), we conclude that NS does not reflect dynamic nonlinear coupling. 

4. Conclusions 
Numerical computations based on weakly nonlinear, resonant interaction theory 

indicate that observationally determined bispectra of oceanic internal waves should 
not differ significantly from zero. The only dissenting observation (NS) has been shown 
to be subject to a kinematic contamination that could account for that result. 

The low utility of bispectra for oceanic internal waves is a result of the general 
insensitivity of bicoherence to weak nonlinearity, the promiscuity of the interactions 
(i.e. there are many triads contributing to each component), and the lack of strong 
interactions among the energy containing components of the internal wave field. We 
do not denegrate bispectral analysis for processes where nonlinearity between three 
strong components is suspected (e.g. internal tides) or where strong interaction in a 
peak is occurring (e.g. surface waves). However, for situations not in these categories, 
one must be prepared to take large amounts of data to achieve statistical significance; 
e.g. Helland et al. (1977) required lo4 e.d.0.f. to achieve marginal significance in wind 
tunnel turbulence, a strongly nonlinear phenomenon ! 

Other than the indication that energetic scales are not strongly coupled by one 
dominant mechanism, we have so far learned little from bispectra of internal waves. 
In particular, the validity of weak resonant interaction has neither been confirmed nor 
denied. 

This work has been supported by NSF grants 00376-23532 (to Scripps Institution 
of Oceanography) and OCE76-14739 and OCE77-25803. This is contribution number 
4323 from the Woods Hole Oceanographic Institution. 
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